首页 > 信息汇总 > 太原专业的考研培训机构

分享

太原专业的考研培训机构

时间:2024-04-24 16:58:59

考研火箭集训营


多种教学模式相结合,确保学习效果的落地执行



  • 考研教育多种教学模式

    学员

    学员的事就是最重要的事



  • 考研教育多种教学模式

    诚信

    诚信是我们事业的基础



  • 考研教育多种教学模式

    激情

    积极向上并富有激情工作



  • 考研教育多种教学模式

    责任

    责任比能力更重要



考研数学高数复习之中值定理

中值定理证明是考研数学试卷中的重点难点,这道题得分率较低,难度较高,究其原因,此题考查学生的逻辑推理能力,对于非数学专业的学生来说,由于平时缺少对这方面能力的训练,所以感觉较难是很正常的。但是就考研来说,中值定理中涉及的题型和方法,近30年还是可以总结出来的,以便考生复习之用。

中值定理包括费马引理、罗尔定理、拉格朗日定理、格西中值定理、泰勒中值定理,这四个定理之间的联和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。而且同学们需要掌握的不单单是这五个中值定理,而且关于他们本身的证明也是需要重点掌握的,尤其是费马引理、罗尔定理、拉格朗日定理、格西定理的证明过程,这个过程在教科书上都有证明的过程,同学们需要自己把这个都完全能够掌握,不仅仅是因为在09年的真题考查过这个的证明,而是这几个的证明思想是之后类似题目证明反复使用的。而闭区间上的连续定理主要是指的最值定理、介值定理、零点存在定理。

一般来讲闭区间上连续的定理是直接用的,也就是用来直接证明一些类似与存在一点在某个区间内使得某个函数是等于零的。而中值定理的应用一般是需要通过构造函数的,一般来讲都是三步走,第一步去构造函数,合理的去构造函数是能够做出这个证明题目最最关键的一步,而构造函数的方法一般是通过对要求的那个等式积分得到,同时也要注意两遍同时乘以一个函数,比如同时乘以ex,因为这个函数积分是不变的,所以会有这个。构造完成后就是第二步去检验条件,看是用那个定理,一般来讲,如果是求一阶的导数等于0优先想到的就是罗尔定理,如果是让你求高阶的一个式子等于零或者等于某个式子,那么优先想到的就是泰勒公式了,因为上面的五个中值定理中,只有泰勒公式是会涉及到高阶的,其他的几个都是一阶,如果知道的是一阶,最多也是求解二阶的。第三步就是求导验证自己求出来的是否是要求证明的结果。

具体题型和方法,数学教研室会在后继文章中向考生一一介绍,敬请期待。

211/985名校是多少人的梦想,可是正如高考选院校一样,我们都是讲究性价比的!有些学校虽为名校,但报考专业却非强势专业,这时倒不如选择一个专业能力强,但学校没那么有名的院校,这更适合未来的发展!
小编特从四大类专业中总结了高性价比院校,仅供参考哦!

考研:四大类专业高性价比院校经管类考研高性价比院校工学类考研高性价比院校外语类考研高性价比院校你所忽视的一所超经济实用型的政法类院校
想获取更权威的院校知识,想找到更适合自己的院校专业方向,平均7年的自身咨询老师随时为你解答!
预约老师解答疑惑

1对1教学服务体系,全方位保驾护航

  • 科学入学

    科学入学测试

  • 一对一

    一对一在线授课

  • 课后作业

    课后作业巩固提升

  • 实时沟通解决问题

    实时沟通解决问题

  • 规划师私人订制学习

    规划师私人订制学习

  • 课堂反馈

    课堂反馈及时上传

  • 阶段性规划课程进度

    阶段性规划课程进度

  • 达到课程目标

    达到课程目标


考研五大阶段课程内容

世纪文都教育科技集团是为大学生提供升学、就业和职场提升的专业教育机构,公司总部位于北京市海淀区中关村高科技园区,在全国拥有三十多家直营机构,六百多家合作机构,三千多个教学网点,累计录制各类教学视频课程两百多万课时,年策划发行图书两百多个品种,两亿多码洋。文都考研培训学员一千多万人次,以业界名师、精彩课程、优质资料、专业服务、前沿技术、科学管理及全方位品牌建设,成为中国知名教育品牌,文都考研辅导的科技创新-文都OMO模式:通过统一文都网用户中心、订单中心、支付中心实现线下培训交易和服务在线化,连接线下/线上培训以及资源渠道。


备考路上的困惑你也有吗?

  • 考研都需要些什么条件? +
    考研都需要些什么条件?
  • 个人心态与作息如何调整? +
    个人心态与作息如何调整?
  • 怎么学习才能效率更高呢? +
    怎么学习才能效率更高呢?

考研集训营

Copyright © 2022-2023 www.axbang.cn All rights reserved.备案号: 豫ICP备2022021264号.

文章由用户自行发布,如有侵权请及时联系删除。

电话咨询 在线客服 预约试听